The Danish Chemical Society Annual Meeting 2019

27th of June 2019, Copenhagen
H.C. Ørsted Institute, University of Copenhagen
Universitetsparken 5, 2100 København Ø

www.chemsoc.dk
Mission and history of The Danish Chemical Society

The Danish Chemical Society was founded in 1879 as a society for Danish chemists and has since focused on the advancement of chemistry and the improvement of the public recognition of chemistry. This mission has not changed and is of even more importance today, where modern life is entirely dependent on chemical achievements like materials research (e.g. polymers), and medicinal chemistry (e.g. drug discovery), to name just a few. The public recognition of chemistry needs more young students and researchers in the various branches of chemistry to engage in discussions on important questions in our society. Many global problems are strongly linked to chemistry (e.g. green energy, affordable health care, clean water or the protection of our environment).

Become a member of The Danish Chemical Society and:

- Participate in scientific meetings organized or supported by our society
- Write articles and essays in the society journal – Dansk Kemi
- Apply for travel grants
- Find job offers within the society network
- Receive society awards for outstanding contributions in chemistry (e.g. PhD prizes)
- Organize local meetings for your chemistry division with support from your society
- Promote your career as an invited speaker at our national meetings

Sign up at chemsoc.dk and become a member (1st year of your membership is free)

[annual membership fee - student members: 225 Kr - full members: 450 Kr]

Famous Danish chemists

W. C. Zeise, 1789-1847
New metal-organic compounds (e.g. Zeise’s salt).

J.N. Brønsted, 1879-1947
Key acid-base definition (Brønsted theory).

N. J. Bjerrum, 1879-1958
Theory of strong electrolytes and applied IR spectroscopy.
Program Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.30 – 11.00</td>
<td>Registration</td>
<td>Vandrehallen</td>
</tr>
<tr>
<td>11.00 – 11.05</td>
<td>Welcome</td>
<td>Auditorium 1</td>
</tr>
<tr>
<td>11.05 – 11.50</td>
<td>Plenary lecture by Prof. John C. Warner</td>
<td>Auditorium 1</td>
</tr>
<tr>
<td></td>
<td>Warner Babcock Institute for Green Chemistry, Wilmington, Mass., USA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Green Chemistry: The Missing Elements”</td>
<td></td>
</tr>
<tr>
<td>11.50 – 12.30</td>
<td>Lunch and Poster session</td>
<td>Vandrehallen</td>
</tr>
<tr>
<td>12.30 – 14.00</td>
<td>Session lectures I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Division of Inorganic Chemistry</td>
<td>Auditorium 7</td>
</tr>
<tr>
<td></td>
<td>The Danish Society for Medicinal Chemistry and Chemical Biology</td>
<td>Auditorium 5</td>
</tr>
<tr>
<td></td>
<td>The Division of Organic Chemistry</td>
<td>Auditorium 1</td>
</tr>
<tr>
<td></td>
<td>The Division of Theoretical Chemistry</td>
<td>Auditorium 6</td>
</tr>
<tr>
<td>14.00 – 14.15</td>
<td>Coffee break</td>
<td>Vandrehallen</td>
</tr>
<tr>
<td>14.15 – 15.45</td>
<td>Session lectures II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Danish Society of Analytical Chemistry</td>
<td>Auditorium 7</td>
</tr>
<tr>
<td></td>
<td>The Danish Society for Medicinal Chemistry and Chemical Biology</td>
<td>Auditorium 5</td>
</tr>
<tr>
<td></td>
<td>The Danish Society of Molecular Spectroscopy</td>
<td>Auditorium 1</td>
</tr>
<tr>
<td></td>
<td>The Division of Pharmaceutics and Biopharmacy</td>
<td>Auditorium 6</td>
</tr>
<tr>
<td>15.45 – 16.00</td>
<td>Coffee break</td>
<td>Vandrehallen</td>
</tr>
<tr>
<td>16.00 – 17.30</td>
<td>Session lectures III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering / IDA Kemi – Kemiingeniørgruppen</td>
<td>Auditorium 5</td>
</tr>
<tr>
<td></td>
<td>The Division of Organic Chemistry</td>
<td>Auditorium 1</td>
</tr>
<tr>
<td></td>
<td>The Division of Pharmaceutics and Biopharmacy</td>
<td>Auditorium 6</td>
</tr>
<tr>
<td>17.30 – 18.15</td>
<td>Bjerrum-Brønsted-Lang lecture awarded by</td>
<td>Auditorium 1</td>
</tr>
<tr>
<td></td>
<td>The Royal Danish Academy of Sciences and Letters</td>
<td></td>
</tr>
<tr>
<td>18.15 – 19.00</td>
<td>Poster session</td>
<td>Vandrehallen</td>
</tr>
<tr>
<td>19.00 –</td>
<td>Dinner and poster awards</td>
<td>KU SUND Restaurant</td>
</tr>
<tr>
<td>20.30</td>
<td>Departure for participants from Odense and Aarhus</td>
<td></td>
</tr>
</tbody>
</table>
Session lectures I 12.30 – 14.00 Room

The Division of Inorganic Chemistry / Sektionen for Uorganisk Kemi

<table>
<thead>
<tr>
<th>Topic</th>
<th>Speaker</th>
<th>Location</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrafast charge carrier dynamics in two-dimensional Ruddlesden-Popper perovskites for stable photovoltaic application</td>
<td>Kaibo Zheng, Technical University of Denmark</td>
<td>Auditorium 7</td>
<td>12.30 – 13.00</td>
</tr>
<tr>
<td>Chemistry without bonds - lanthanide coordination chemistry in solution</td>
<td>Thomas Just Sørensen, University of Copenhagen</td>
<td>Auditorium 7</td>
<td>13.00 – 13.30</td>
</tr>
<tr>
<td>Beyond graphene: exfoliation and functionalization of magnetic 2D coordination polymers</td>
<td>Guillermo Mínguez Espallargas, ICMOL, University of Valencia</td>
<td>Auditorium 7</td>
<td>13.30 – 14.00</td>
</tr>
</tbody>
</table>

The Danish Society for Medicinal Chemistry and Chemical Biology / Dansk Selskab for Medicinalkemi og Kemisk Biologi

<table>
<thead>
<tr>
<th>Topic</th>
<th>Speaker</th>
<th>Location</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medchem optimisation of a RORγ candidate – working within boundaries</td>
<td>Morten Dahl Sørensen, LEO Pharma, Ballerup, Denmark</td>
<td>Auditorium 5</td>
<td>12.30 – 13.00</td>
</tr>
<tr>
<td>EFMC Candidate Lecture 1</td>
<td>Camilla Kaas Frich, Aarhus University</td>
<td>Auditorium 5</td>
<td>13.00 – 13.20</td>
</tr>
<tr>
<td>EFMC Candidate Lecture 2</td>
<td>Carlos Moreno-Yruela, University of Copenhagen, Denmark</td>
<td>Auditorium 5</td>
<td>13.20 – 13.40</td>
</tr>
<tr>
<td>EFMC Candidate Lecture 3</td>
<td>Raoul Walther, Aarhus University</td>
<td>Auditorium 5</td>
<td>13.40 – 14.00</td>
</tr>
</tbody>
</table>
Session lectures I

The Division of Organic Chemistry / Sektionen for Organisk Kemi

Biosynthetic strategies for development of improved antibody-based drug conjugates for cancer treatment
Katrine Qvortrup
Technical University of Denmark
10.55 – 11.35

Oligomers of indenofluorene-extended tetrathiafulvalenes for conducting materials
Line M. Broløs
Brøndsted Lab, KU SCIENCE, University of Copenhagen
11.35 – 12.00

RNA conjugates with GalNAC as a step towards targeted cholesterol modulation
Anders H. Hansen
Astakhova Lab, Technical University of Denmark
12.00 – 12.25

The Division of Theoretical Chemistry / Sektionen for Teoretisk Kemi

Operators in Machine Learning: Response Properties in Chemical Space
Anders Steen Christensen
Universität Basel
12.30 – 13.00

Introducing Polarizable Force Fields with non-variational Multipoles: Theory and Implementation for Molecular Dynamics Simulations
Pier Paolo Poier
Aarhus University
13.00 – 13.30

High Throughput Virtual Screening of 230 Billion Molecular Solar Heat Battery Candidates
Mads Koerszt Madsen
University of Copenhagen
13.30 – 14.00
<table>
<thead>
<tr>
<th>Session lectures II</th>
<th>14.15 – 15.45</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Danish Society of Analytical Chemistry / Selskabet for Analytisk Kemi</td>
<td>Auditorium 7</td>
<td>The Danish Society of Analytical Chemistry / Selskabet for Analytisk Kemi
Development of analytical tools to investigate conversion of biomass to fuels and other products
Marianne Glasius
Institute for Chemistry, Aarhus University</td>
</tr>
<tr>
<td>The Danish Society for Medicinal Chemistry and Chemical Biology / Dansk Selskab for Medicinalkemi og Kemisk Biologi</td>
<td>Auditorium 5</td>
<td>The Danish Society for Medicinal Chemistry and Chemical Biology / Dansk Selskab for Medicinalkemi og Kemisk Biologi
Identification of nanomolar inhibitor of RuvBL1/2 from a DNA-encoded small molecule library
Lars Kolster Petersen
Vipergen, Copenhagen, Denmark</td>
</tr>
<tr>
<td>NCK Award introduction</td>
<td></td>
<td>NCK Award introduction
Anders Lohse
NCK, Farum, Denmark</td>
</tr>
<tr>
<td>NCK Award lecture</td>
<td></td>
<td>NCK Award lecture
David Margulies
Weizmann Institute of Science, Rehovot, Israel</td>
</tr>
<tr>
<td>EFMC Winner announcement</td>
<td></td>
<td>EFMC Winner announcement
Trond Ulven
University of Copenhagen</td>
</tr>
</tbody>
</table>
Session lectures II

14.15 – 15.45

The Danish Society of Molecular Spectroscopy / Dansk Forening for Molekylspektroskopi

Molekylspektroskopiprisen 2019 / The Molecular Spectroscopy Prize 2019

The Electronic Transitions of Molecular Oxygen
Mikkel Bregnhøj
Department of Chemistry, Aarhus University

14.15 – 14.45

Synthesis of alkali metal water glasses and their characterization by multinuclear study of NMR spectroscopy
Sarah Maria Bernadette Wittmann
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark

14.45 – 15.15

Optical Investigation of Single Fluorophores and their Application as Sensitive Probes in Soft Matter Science
Stefan Krause
Nano-Science Center, University of Copenhagen

15.15 – 15.45

The Division of Pharmaceutics and Biopharmacy / Sektionen for Farmaci og Biofarmaci

From drug substance to drug product: the challenges of peptide instability
Marco van de Weert
Dept. Pharmacy, University of Copenhagen

14.15 – 14.45

From cells to tissue: the development of keratinocytes into artificial skin
Nicoline Dorothea Jakobsen
BMB, University of Southern Denmark

14.45 – 15.15

Surface chemistry of pharmaceutical crystals in ethanol-water mixtures
Mikkel Herzberg
Dept. Pharmacy, University of Copenhagen

15.15 – 15.45
Session lectures III

Chemical Engineering / IDA Kemi – Kemiingeniørgruppen

Auditorium 5

Modified zeolites: synthesis, characterizations and catalytic applications
Farnoosh Goodarzi
Centre for Catalysis and Sustainable Chemistry, DTU Chemistry
16.00 – 16.30

Cu-centers in porous catalytic materials studied by in-situ EPR
David Nielsen
Centre for Catalysis and Sustainable Chemistry, DTU Chemistry
16.30 – 17.00

Homogenous catalysis for the conversion of biomass to platform chemicals
Maria Padilla Paz
Centre for Catalysis and Sustainable Chemistry, DTU Chemistry
17.00 – 17.30

The Division of Organic Chemistry / Sektionen for Organisk Kemi

Auditorium 1

PhD prize – award lecture
16.00 – 16.30

Synthesis of ingenol and beyond – an academia/industry collaboration
Lars Jørgensen
LEO Pharma, Ballerup, Denmark
16.30 – 17.00

Recent developments in low pressure carbonylations
Troels Skrydstrup
Aarhus University
17.00 – 17.30

The Division of Pharmaceutics and Biopharmacy / Sektionen for Farmaci og Biofarmaci

Auditorium 6

Impact of the position of phenolic OH-group in tetrahydroxy-phenyl-porphyrins on the release and transfer from liposomes
Kirishana Rajakulendran
FKF, University of Southern Denmark
16.00 – 16.30

Microwave-induced in situ amorphization
Nele Hempel
Dept. Pharmacy, University of Copenhagen
16.30 – 17.00
Imagine a world where all segments of society demanded environmentally benign products! Imagine if all consumers, all retailers and all manufacturers insisted on buying and selling only non-toxic materials! The unfortunate reality is that, even if this situation were to occur, our knowledge of materials science and chemistry would allow us to provide only a small fraction of the products and materials that our economy is based upon. The way we learn and teach chemistry and materials science is for the most part void of any information regarding mechanisms of toxicity and environmental harm. Green Chemistry is a philosophy that seeks to reduce or eliminate the use of hazardous materials at the design stage of a materials process. It has been demonstrated that materials and products CAN be designed with negligible impact on human health and the environment while still being economically competitive and successful in the marketplace. This presentation will describe the history and background of Green Chemistry and discuss the opportunities for the next generation of materials designers to create a safer and more sustainable future.

A farmer spays pesticide on an apple tree in Hanyuan, China (from “Rethink how Chemical Hazards are Tested” Warner, John C.; Ludwig, Jennofer K. Nature 2016, 536 (7616) 269-270).
John C. Warner
100 Research Drive
Wilmington, MA 01887
978-225-5420
John@JohnWarner.Org

John received his BS in Chemistry from UMASS Boston, and his PhD in Chemistry from Princeton University. After working at the Polaroid Corporation for nearly a decade, he then served as tenured full professor at UMASS Boston and Lowell (Chemistry and Plastics Engineering). In 2007 he founded the Warner Babcock Institute for Green Chemistry, with Jim Babcock (a research organization developing green chemistry technologies), and Beyond Benign with Amy Cannon (a non-profit dedicated to sustainability and green chemistry education).

While a senior research group leader at the Polaroid Corporation (1988-1997) Warner coauthored the defining text for the field of Green Chemistry with Paul Anastas and codified the 12 Principles of Green Chemistry. He is the editor of the journal “Green Chemistry Letters and Reviews”. Warner is on the advisory panel for the Ellen MacArthur Foundation’s New Plastics Economy has been elected a full member of the Club of Rome and is an advisor for Parley for the Oceans where in 2016 he helped create the technology for the Adidas Parley Recycled Ocean Plastics Shoe. He has served as sustainability advisor for several multinational companies. His research and publications in synthetic organic chemistry, noncovalent derivatization, polymer photochemistry and low temperature metal oxide semiconductors has provided the foundation for his theories of what he calls “entropic control in materials design”.

The Warner Babcock Institute for Green Chemistry (WBI) is an independent 42,000 sq ft (4000 sq m) research laboratory in Wilmington, Massachusetts fully equipped with state-of-the-art chemistry and engineering equipment. With over 200 patents across more than 70 patent families, he has worked with over 100 fortune 500 companies helping to invent commercially relevant (high performance and appropriate cost) green chemistry technologies across all sectors of the chemical industry. His chemistry inventions have served as the foundation for several new companies, examples include: Collaborative Medicinal Development (ALS Therapy, Phase II Clinical Trials), Hairprint (hair color restoration), Collaborative Aggregates (Delta-S and Delta-Mist, asphalt warm mix, rejuvenator, & spray coat), Lowlight Indoor Solar Energy devices for IoT and BIPV, Formaldehyde and Isocyanate Free wood composite adhesive, and Lithium Cobalt Battery recycling technology.

In 2007 Warner cofounded the nonprofit organization Beyond Benign with Amy Cannon. Collocated at the WBI labs in Wilmington, MA, Beyond Benign creates curricula and training for K-12 and university educators to incorporate concepts of green chemistry an sustainability to improve STEM education. Beyond Benign administers the Green Chemistry Commitment, asking University Chemistry departments to incorporate the principles of green chemistry into their mainstream curricula.

John has received awards as an academic (PAESMEM – President G. W. Bush & NSF, 2004), industrial chemist (Perkin Medal – Society of Chemical Industry, 2014), inventor (Lemelson Ambassadorship – Lemelson Foundation & AAAS) and for governmental chemicals policy (Reinventing Government National Performance Review – Vice President A. Gore & EPA, 1997). He received the American Institute of Chemistry's Northeast Division's Distinguished Chemist of the Year for 2002 and the Council of Science Society President’s 2008 Leadership award. Warner was named by ICIS as one of the most influential people impacting the global chemical industries. In 2011 he was elected a Fellow of the American Chemical Society and named one of “25 Visionaries Changing the World” by Utne Reader. He serves as Distinguished Professor of Green Chemistry at Monash University in Australia and in 2017 the German Ministry of Economic Affairs and The Technical University of Berlin announced the naming of “The John Warner Center for Green Chemistry Star-Ups” in his honor.
Bjerrum – Brønsted – Lang award lecture

Prof. Leila Lo Leggio
Department of Chemistry
University of Copenhagen

The Royal Danish Academy of Sciences and Letters
Sponsor

Organized by: The Danish Chemical Society / Kemisk Forening